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1.0 GATHER compliance 

Supplementary Table 1. Guidelines for Accurate and Transparent Health Estimates 
Reporting (GATHER) checklist 

Item 
# 

Checklist item Reported on page # 

Objectives and funding 
1 Define the indicator(s), populations (including age, sex, 

and geographic entities), and time period(s) for which 
estimates were made. 

Main text: Introduction, Methods 
(Data) 

2 List the funding sources for the work. Main text: Acknowledgements 
Data Inputs 
   For all data inputs from multiple sources that are synthesized as part of the study: 
3 Describe how the data were identified and how the data 

were accessed.  
Main text: Methods (Data, Data 
availability), Supplementary 
Information: 3.0 Supplementary 
data 

4 Specify the inclusion and exclusion criteria. Identify all 
ad-hoc exclusions. 

Main text: Methods (Data 
exclusion criteria), 
Supplementary Information: 3.1 
Data excluded from model 

5 Provide information on all included data sources and their 
main characteristics. For each data source used, report 
reference information or contact name/institution, 
population represented, data collection method, year(s) of 
data collection, sex and age range, diagnostic criteria or 
measurement method, and sample size, as relevant.  

Supplementary Information: 3.0 
Supplementary data 

6 Identify and describe any categories of input data that 
have potentially important biases (e.g., based on 
characteristics listed in item 5). 

Main text: Methods 
(Limitations) 

   For data inputs that contribute to the analysis but were not synthesized as part of the study: 
7 Describe and give sources for any other data inputs. Main text: Methods (Data: 

Spatial covariates), 
Supplementary Information: 4.0 
Supplementary covariates 

   For all data inputs: 
8 Provide all data inputs in a file format from which data 

can be efficiently extracted (e.g., a spreadsheet rather than 
a PDF), including all relevant meta-data listed in item 5. 
For any data inputs that cannot be shared because of 
ethical or legal reasons, such as third-party ownership, 
provide a contact name or the name of the institution that 
retains the right to the data. 

Available at 
http://ghdx.healthdata.org/rec
ord/africa-child-growth-
failure-geospatial-estimates-
2000-2015 
Supplementary Information: 3.0 
Supplementary data 
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Data analysis 
9 Provide a conceptual overview of the data analysis 

method. A diagram may be helpful.  
Main text: Methods (Data), 
Supplementary Information: 5.1 
Seasonality adjustment, 5.2 
Cluster combination and spatial 
integration over polygon records 

10 Provide a detailed description of all steps of the analysis, 
including mathematical formulae. This description should 
cover, as relevant, data cleaning, data pre-processing, data 
adjustments and weighting of data sources, and 
mathematical or statistical model(s).  

Main text: Methods (Analysis), 
Supplementary Information: 5.3 
Geostatistical model 

11 Describe how candidate models were evaluated and how 
the final model(s) were selected. 

Main text: Methods (Analysis: 
Model validation), 
Supplementary Information: 5.4 
Model validation 

12 Provide the results of an evaluation of model 
performance, if done, as well as the results of any relevant 
sensitivity analysis. 

Main text: Methods (Analysis), 
Supplementary Information: 5.4 
Model validation 

13 Describe methods for calculating uncertainty of the 
estimates. State which sources of uncertainty were, and 
were not, accounted for in the uncertainty analysis. 

Main text: Methods (Analysis: 
Geostatistical model), 
Supplementary Information: 
5.3.3 Model description, 5.3.6 
Model fitting and estimate 
generation    

14 State how analytic or statistical source code used to 
generate estimates can be accessed. 

Available at 
http://ghdx.healthdata.org/rec
ord/africa-child-growth-
failure-geospatial-estimates-
2000-2015 

Results and Discussion 
15 Provide published estimates in a file format from which 

data can be efficiently extracted. 
Raster files for spatial data and 
CSVs of estimates available at 
http://ghdx.healthdata.org/rec
ord/africa-child-growth-
failure-geospatial-estimates-
2000-2015 

16 Report a quantitative measure of the uncertainty of the 
estimates (e.g. uncertainty intervals). 

Main text: Figs 1f, 2f, Extended 
Data Fig 2f, Supplementary 
Information: Supplementary Figs 
13-15

17 Interpret results in light of existing evidence. If updating a 
previous set of estimates, describe the reasons for changes 
in estimates. 

Main text: Disparate progress in 
reducing child growth failure, 
Outlook for the 2025 GNT 

18 Discuss limitations of the estimates. Include a discussion 
of any modelling assumptions or data limitations that 
affect interpretation of the estimates. 

Main text: Methods 
(Limitations) 
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2.0 Supplementary discussion 

2.1 Remedial actions needed to reduce child growth failure 

Effectively reducing child growth failure (CGF) requires delivery of proven prevention and 
intervention packages, including health services, nutrition, and education programmes for 
pregnant women and parents, treatment programmes for acute malnutrition, and targeted policies 
to stabilise food supplies, improve societal conditions predisposing to CGF, and maximise the 
efficiency with which appropriate help is delivered to the specific people in the specific 
communities that need it most. 

The “first 1000 days” from conception to age 2 are a crucial development window1, so first-line 
efforts in the locations with the highest rates of CGF should focus on prevention strategies in 
mothers and babies. Maternal problems predisposing to CGF include antenatal infections, 
inadequate birth spacing, maternal calorie and micronutrient deficiencies, poor education, and 
strenuous physical work. Infant- and toddler-focused interventions should aim both to prevent 
infections whose metabolic demands can quickly lead infants to have inadequate energy supply2, 
and optimise nutritional intake, including breastfeeding, intermittent micronutrient 
supplementation, and complementary feeding when appropriate or needed.3 

WHO guidelines recommend inpatient care for treatment of wasting (severe acute malnutrition 
[SAM] and moderate acute malnutrition [MAM]) at referral centers.4,5 In many settings, likely 
including many of those identified clearly in these maps as having high burden and/or little 
improvement, a shortage of trained, adequately supported health providers can be a limiting 
factor in an inpatient-only approach. In such settings, an outpatient-oriented community 
management of acute malnutrition (CMAM) model is likely to have a more significant impact. 
By encouraging early identification of MAM and SAM, enhanced parental compliance, and 
provision of ready-to-use therapeutic foods (RUTF),6,7 the CMAM model has been shown to be 
effective in inducing nutrition recovery. Precision public health mapping can help guide 
investment priorities for establishing and/or strengthening such programmes by examining the 
geographic distribution of CGF within relevant administrative units. Strategically placing 
CMAM programmes in high-burden rural settings may be appropriate, while inpatient 
programmes may be more successful – and have bigger impact – if they are situated in nearby 
population centers so as to ensure appropriate infrastructure, human resources, capital, and 
logistical support. 

Governmental policies should focus on promoting sustainable agriculture and land management, 
universal food fortification, and preparedness for climactic and seasonal fluctuations in domestic 
crop yields.2,8 Because of the close links between CGF and sociodemographic deprivation, 
society-wide efforts to improve education, reduce poverty, and ensure an equal status for women 
are likely to positively impact health outcomes.9 Economic and financial policies, including 
engagement with stakeholders from private industry when possible, should aim to encourage 
widespread availability and consumption of nutritious foods.10 All policy implementation efforts 
should be cognizant to employ optimal delivery platforms and ensure appropriate matching of 
interventions to local epidemiologic profiles. For example, while perinatal care and CMAM 
programmes may be naturally best centered in medical facilities, other distribution hubs like 
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markets, community centres, religious centres, or schools may be more appropriate for delivery 
of nutrition education programmes, fortified foods and supplements, or infection prevention 
programmes.3 All of these strategies are better focused – and synergised – with the subnational 
insights afforded by precision public health mapping. 
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3.0 Supplementary data 

The data sources used to model CGF indicators are described below. Information on survey 
locations, years, source, and number of individuals, polygons, and/or geo-positioned clusters can 
be found in Supplementary Table 2. Supplementary Figures 1, 2, and 3 display data availability 
for each indicator. Data from 1998 and 1999 were mapped to 2000 due to both data scarcity in 
earlier years and to help establish a solid baseline. Reasons for datasets being excluded from 
analysis are detailed in Supplementary Information 3.1. 

Supplementary Table 2. Household surveys used in mapping.  
Number identification (NID) can be used to locate a particular data source in the Global Health 
Data Exchange at http://ghdx.healthdata.org/.  

Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Algeria 2002-2003 PAPFAM 627 4,728 0 47 
Algeria 2012-2013 UNICEF MICS 210614 13,825 0 7 
Angola 2001 UNICEF MICS 687 5,370 0 18 
Angola 2015-2016 DHS Program 218555 6,487 625 0 
Benin 2001 DHS Program 18950 4,509 247 0 
Benin 2006 DHS Program 18959 13,361 0 12 
Benin 2011-2012 DHS Program 79839 11,312 745 0 
Botswana 2000 UNICEF MICS 1404 2,846 0 14 
Botswana 2007-2008 Family Health 

Survey 
22125 2,631 0 24 

Burkina Faso 1998 World Bank 
Priority Survey 

1912 3,676 0 33 

Burkina Faso 1998-1999 DHS Program 19076 4,696 208 0 
Burkina Faso 2003 CWIQ 1855 7,432 0 232 
Burkina Faso 2003 DHS Program 19088 8,645 397 0 
Burkina Faso 2006 UNICEF MICS 1927 4,947 195 0 
Burkina Faso 2007 CWIQ 18499 4,077 0 13 
Burkina Faso 2010-2011 DHS Program 19133 6,327 540 0 
Burkina Faso 2014 Continuous 

Multisectoral 
Survey 

236156 1,075 0 13 

Burundi 2000 UNICEF MICS 1994 63 0 17 
Burundi 2010-2011 DHS Program 30431 3,497 376 0 
Cameroon 1998 DHS Program 19198 1,926 0 10 
Cameroon 2004 DHS Program 19211 3,325 444 0 
Cameroon 2006 UNICEF MICS 2063 6,114 0 191 
Cameroon 2011 DHS Program 19274 5,179 574 0 
Cameroon 2014 UNICEF MICS 244455 6,768 0 12 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Central 
African 
Republic 

2000 UNICEF MICS 2209 13,399 0 17 

Central 
African 
Republic 

2006 UNICEF MICS 2223 6,910 0 12 

Central 
African 
Republic 

2010-2011 UNICEF MICS 82832 10,267 0 17 

Chad 2000 UNICEF MICS 2244 5,253 0 15 
Chad 2004 DHS Program 19315 4,627 0 9 
Chad 2010 UNICEF MICS 76701 15,443 0 60 
Chad 2014-2015 DHS Program 157025 10,422 623 0 
Comoros 2000 UNICEF MICS 3114 4,267 0 3 
Comoros 2012-2013 DHS Program 76850 2,601 241 0 
Côte d'Ivoire 1998-1999 DHS Program 18531 1,599 140 0 
Côte d'Ivoire 2006 UNICEF MICS 26433 8,550 0 52 
Côte d'Ivoire 2011-2012 DHS Program 18533 3,192 341 0 
Democratic 
Republic of 
Congo 

2001 UNICEF MICS 3161 9,888 0 11 

Democratic 
Republic of 
Congo 

2007 DHS Program 19381 3,595 293 0 

Democratic 
Republic of 
Congo 

2010 UNICEF MICS 26998 10,859 0 11 

Democratic 
Republic of 
Congo 

2013 DHS Program 76878 7,711 492 0 

Djibouti 2006 UNICEF MICS 3404 2,126 35 1 
Djibouti 2012 PAPFAM 218035 3,464 0 6 
Egypt 2000 DHS Program 19511 10,683 985 0 
Egypt 2003 DHS Program 19529 5,401 876 0 
Egypt 2005 DHS Program 19521 12,547 1287 0 
Egypt 2008 DHS Program 26842 10,252 1221 0 
Egypt 2013-2014 UNICEF MICS 159617 5,030 0 6 
Egypt 2014 DHS Program 154897 15,045 1734 0 
Equatorial 
Guinea 

2000 UNICEF MICS 3655 2,364 0 7 

Eritrea 2002 DHS Program 19539 5,660 0 6 
Ethiopia 2000 DHS Program 19571 8,980 533 0 
Ethiopia 2005 DHS Program 19557 4,151 520 0 
Ethiopia 2010-2011 DHS Program 21301 9,594 571 0 
Ethiopia 2011-2012 LSMS 93848 2,438 331 0 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Ethiopia 2013-2014 LSMS 235215 606 280 0 
Ethiopia 2016 DHS Program 218568 9,106 623 4 
Gabon 2000-2001 DHS Program 19579 3,564 0 40 
Gabon 2012 DHS Program 76706 3,475 324 0 
Gambia 2000 UNICEF MICS 3922 3,390 0 8 
Gambia 2005-2006 UNICEF MICS 3935 6,414 0 37 
Gambia 2013 DHS Program 77384 3,354 0 37 
Ghana 1998-1999 DHS Program 19614 2,859 396 0 
Ghana 2003 DHS Program 19627 3,237 407 0 
Ghana 2006 UNICEF MICS 4694 3,390 0 10 
Ghana 2007-2008 UNICEF MICS 160576 8,352 0 4 
Ghana 2008 DHS Program 21188 2,502 400 0 
Ghana 2010-2011 UNICEF MICS 56241 435 5 0 
Ghana 2011 UNICEF MICS 63993 6,854 738 0 
Ghana 2014 DHS Program 157027 2,735 414 0 
Guinea 1999 DHS Program 19670 4,599 292 0 
Guinea 2005 DHS Program 19683 2,694 290 0 
Guinea 2012 DHS Program 69761 3,208 300 0 
Guinea-
Bissau 

2000 UNICEF MICS 4808 5,612 0 9 

Guinea-
Bissau 

2006 UNICEF MICS 4818 5,485 0 9 

Guinea-
Bissau 

2014 UNICEF MICS 174049 7,526 0 9 

Kenya 1998 DHS Program 20132 3,121 521 0 
Kenya 2000 UNICEF MICS 7387 6,675 801 0 
Kenya 2003 DHS Program 20145 4,916 397 0 
Kenya 2005-2006 Kenya 

Integrated 
Household 
Budget Survey 

7375 6,971 1,283 0 

Kenya 2007 UNICEF MICS 155335 917 76 0 
Kenya 2008 UNICEF MICS 7401 12,222 590 0 
Kenya 2008-2009 DHS Program 21365 5,335 397 0 
Kenya 2009 UNICEF MICS 56420 445 0 1 
Kenya 2011 UNICEF MICS 135416 4,819 289 0 
Kenya 2013-2014 UNICEF MICS 203664 1,026 50 0 
Kenya 2014 DHS Program 157057 18,934 1583 0 
Lesotho 2004-2005 DHS Program 20167 1,385 353 0 
Lesotho 2009-2010 DHS Program 21382 1,642 383 0 
Lesotho 2014 DHS Program 157058 1,349 369 0 
Liberia 2006-2007 DHS Program 20191 4,471 290 0 
Liberia 2013 DHS Program 77385 3,263 322 0 
Madagascar 2003-2004 DHS Program 20223 4,703 0 6 
Madagascar 2008-2009 DHS Program 21409 5,154 583 0 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Malawi 2000 DHS Program 20252 9,768 559 0 
Malawi 2004-2005 DHS Program 20263 8,875 520 0 
Malawi 2004-2005 LSMS 46317 6,777 0 26 
Malawi 2006 UNICEF MICS 7919 22,398 0 26 
Malawi 2010 DHS Program 21393 4,784 812 0 
Malawi 2010-2011 LSMS 93806 7,704 768 0 
Malawi 2013 LSMS 224223 2,477 543 0 
Malawi 2013-2014 UNICEF MICS 161662 18,525 0 31 
Malawi 2015-2016 DHS Program 218581 5,235 850 0 
Mali 2001 DHS Program 20315 9,752 395 0 
Mali 2006 DHS Program 20274 11,504 404 0 
Mali 2009-2010 UNICEF MICS 270627 22,972 0 9 
Mali 2012-2013 DHS Program 77388 4,609 412 0 
Mauritania 2000-2001 DHS Program 20322 4,006 0 13 
Mauritania 2007 UNICEF MICS 8115 8,210 0 170 
Mauritania 2011 UNICEF MICS 152783 8,887 0 194 
Morocco 2003-2004 DHS Program 20361 5,666 479 0 
Morocco 2010-2011 PAPFAM 126909 6,359 0 74 
Mozambique 2003 DHS Program 20394 8,279 0 11 
Mozambique 2008-2009 UNICEF MICS 27031 10,849 0 11 
Mozambique 2011 DHS Program 55975 9,708 609 0 
Namibia 2000 DHS Program 20417 3,034 256 0 
Namibia 2006-2007 DHS Program 20428 3,758 484 0 
Namibia 2009-2010 Household 

Income and 
Expenditure 
Survey 

134371 5,573 0 13 

Namibia 2013 DHS Program 150382 1,843 502 0 
Niger 1998 DHS Program 20537 4,037 268 0 
Niger 2000 UNICEF MICS 9439 4,863 0 8 
Niger 2006 DHS Program 20499 3,862 0 8 
Niger 2012 DHS Program 74393 5,119 0 8 
Nigeria 1999 UNICEF MICS 9506 10,596 0 31 
Nigeria 2003 DHS Program 20567 4,723 359 0 
Nigeria 2007 UNICEF MICS 9516 15,939 0 37 
Nigeria 2008 DHS Program 21433 22,768 886 0 
Nigeria 2010 DHS Program 30991 2,062 207 0 
Nigeria 2011 UNICEF MICS 76703 24,256 0 37 
Nigeria 2012-2013 General 

Household 
Survey 

151797 2,709 0 61 

Nigeria 2013 DHS Program 77390 26,427 888 0 
Nigeria 2015-2016 General 

Household 
Survey 

274160 2,862 512 0 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Republic of 
Congo 

2005 DHS Program 19391 4,080 0 12 

Republic of 
Congo 

2011-2012 DHS Program 56151 4,534 0 12 

Rwanda 2000 DHS Program 20722 6,317 0 12 
Rwanda 2000 UNICEF MICS 26930 2,815 0 12 
Rwanda 2005 DHS Program 20740 3,738 455 0 
Rwanda 2006 Rwanda 

Comprehensive 
Food Security/ 
Vulnerability 
Assessment 
and Nutrition 
Survey 

58185 1,405 0 225 

Rwanda 2010-2011 DHS Program 56040 4,120 492 0 
Rwanda 2012 Rwanda 

Comprehensive 
Food Security/ 
Vulnerability 
Assessment 
and Nutrition 
Survey 

151436 4,424 0 406 

Rwanda 2014-2015 DHS Program 157063 3,601 491 0 
São Tomé & 
Príncipe 

2000 UNICEF MICS 27055 1,750 0 4 

São Tomé & 
Príncipe 

2008-2009 DHS Program 26866 1,644 0 7 

São Tomé & 
Príncipe 

2014 UNICEF MICS 214640 1,952 0 7 

Senegal 2000 UNICEF MICS 27044 7,037 0 10 
Senegal 2005 DHS Program 26855 2,846 360 0 
Senegal 2010-2011 DHS Program 56063 3,814 385 0 
Senegal 2012-2013 DHS Program 111432 6,014 200 0 
Senegal 2014 DHS Program 191270 6,040 0 14 
Senegal 2015 DHS Program 218592 6,177 214 0 
Senegal 2016 DHS Program 286772 6,032 214 0 
Sierra Leone 2000 UNICEF MICS 11639 2,401 0 4 
Sierra Leone 2005 UNICEF MICS 11649 5,080 0 14 
Sierra Leone 2008 DHS Program 21258 2,239 340 0 
Sierra Leone 2010 UNICEF MICS 76700 8,267 0 14 
Sierra Leone 2013 DHS Program 131467 4,654 433 0 
Somalia 2006 UNICEF MICS 11774 5,776 0 18 
Somalia 2007-2010 KEMRI 

Wellcome 
270669 49,362 911 0 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Trust Research 
Programme 

South Africa 2002 Agincourt 
Integrated 
Family Survey 

135825 195 0 1 

South Africa 2004 Agincourt 
Integrated 
Family Survey 

135826 300 0 1 

South Africa 2008 National 
Income 
Dynamics 
Study 

27885 2,028 0 47 

South Africa 2010-2011 National 
Income 
Dynamics 
Study 

133731 1,606 0 9 

South Africa 2012 National 
Income 
Dynamics 
Study 

133732 3,156 0 60 

South Africa 2014-2015 National 
Income 
Dynamics 
Study 

265153 3,858 0 57 

South Sudan 2000 UNICEF MICS 12232 1,068 0 3 
South Sudan 2010 UNICEF MICS 32189 6,564 0 10 
Sudan 2000 UNICEF MICS 12243 19,272 0 8 
Sudan 2010 UNICEF MICS 153643 12,150 0 15 
Sudan 2014 UNICEF MICS 200617 12,795 0 18 
Swaziland 2000 UNICEF MICS 12320 3,295 0 4 
Swaziland 2006-2007 DHS Program 20829 2,065 268 0 
Swaziland 2010 UNICEF MICS 30325 2,572 0 4 
Swaziland 2014 UNICEF MICS 200707 2,654 0 4 
Tanzania 1999 DHS Program 20865 2,542 173 0 
Tanzania 2004 LSMS 14341 1,950 885 0 
Tanzania 2004-2005 DHS Program 20875 7,296 0 26 
Tanzania 2006-2007 CWIQ 31831 9,948 0 28 
Tanzania 2009-2010 DHS Program 21331 6,722 458 0 
Tanzania 2010-2011 LSMS 81005 2,733 0 127 
Tanzania 2012-2013 LSMS 224096 3,345 0 139 
Tanzania 2014-2016 LSMS 311265 2,456 421 0 
Tanzania 2015-2016 DHS Program 218593 9,048 607 0 
Togo 1998 DHS Program 20909 3,768 282 0 
Togo 2006 UNICEF MICS 12896 3,974 0 6 
Togo 2010 UNICEF MICS 40021 4,680 0 6 
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Country Survey 
year(s) Source 

Number 
Identificati
on (NID) 

Number of 
individuals 

Number of 
geo-

positioned 
clusters 

Number of 
polygons 
(areal) 

Togo 2013 DHS Program 77515 3,232 328 0 
Tunisia 2011-2012 UNICEF MICS 76709 2,742 0 9 
Uganda 2000-2001 DHS Program 20993 4,690 266 0 
Uganda 2006 DHS Program 21014 2,221 333 0 
Uganda 2009-2010 LSMS 81004 1,418 287 7 
Uganda 2010-2011 LSMS 142934 1,602 408 0 
Uganda 2011 DHS Program 56021 2,086 391 0 
Uganda 2011-2012 LSMS 142935 1,356 370 0 
Uganda 2013-2014 LSMS 264959 1,616 0 413 
Zambia 1998 LCMS 14015 9,921 0 72 
Zambia 1999 UNICEF MICS 14122 4,268 0 71 
Zambia 2001-2002 DHS Program 21102 5,651 0 9 
Zambia 2002-2003 LCMS 14027 6,488 0 72 
Zambia 2004-2005 LCMS 14063 11,231 0 72 
Zambia 2006 LCMS 14105 7,756 0 72 
Zambia 2007 DHS Program 21117 5,423 319 0 
Zambia 2009 Access to Act 

National 
Integrated 
Family Survey 

162031 1,293 1287 0 

Zambia 2010 LCMS 58660 10,768 0 72 
Zambia 2013-2014 DHS Program 77516 11,854 719 0 
Zimbabwe 1999 DHS Program 21151 2,784 217 0 
Zimbabwe 2005-2006 DHS Program 21163 4,196 394 0 
Zimbabwe 2009 UNICEF MICS 35493 6,241 0 10 
Zimbabwe 2010-2011 DHS Program 55992 4,278 393 0 
Zimbabwe 2014 UNICEF MICS 152720 9,588 0 10 
Zimbabwe 2015 DHS Program 157066 5,014 399 0 

3.1 Data excluded from model 

Select data sources were excluded for the following reasons: missing survey weights for areal 
data, missing gender variables, insufficient age granularity (in months) for HAZ and WAZ 
calculation in children age 0-2 years, incomplete sampling (e.g., only children age 0-3 years 
measured), or untrustworthy data (as determined by the survey administrator or by user 
inspection). Within each source, polygon survey clusters with a sample size of one were 
excluded. Untrustworthy data refers specifically to the exclusion of six surveys for the reasons 
described here. Two datasets, the 2009-2010 Ghana Socioeconomic Panel Survey and the 2005 
Burkina Faso Core Welfare Indicator Questionnaire (CWIQ) Survey, were excluded because the 
national prevalence values reported for one or more indicators were determined to be 
implausibly high based on the country-level trend seen in the seven other Ghana and six other 
Burkina Faso sources. In addition, the data were only resolved to the first administrative 
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subdivision. This combined with the very coarse spatial resolution make the data of minor utility 
for our geospatial purposes. Two additional sources, the 2014 Multiple Indicator Cluster Surveys 
(MICS) Kenya Kakamega and Bungoma surveys, were excluded because, according to the 
survey documentation, the “anthropometric data suffered from digit preference for both weight 
and height,” meaning the measurements were rounded with preference for certain numbers in a 
way that introduced considerable bias. The 2015 Ethiopia Living Standards Measurement Study 
– Integrated Surveys on Agriculture (LSMS-ISA) was excluded because the low prevalence of
child growth failure in the Ogaden region was determined to be unrealistic by specialists in the
field of child nutrition. Lastly, the 2015 Egypt Special Demographic and Health Survey (DHS)
was excluded due a to non-proportional sample allocation designed to estimate the prevalence of
hepatitis and certain other NCD risk factors such that the survey sampling was not equivalent to
the rest of the surveys.

WWW.NATURE.COM/NATURE | 16

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25760



         a b 

Supplementary Figure 1. Stunting data availability by type and country, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are plotted by data source, type, and sample size (a). Sample size represents 
the number of individual microdata records for each survey. Mean stunting prevalence of the input coordinate or area is mapped (b). 
This database consists of 50,142 clusters and 4,253 polygons with a sample size totaling over 1.15 million children in Africa.  
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         a b 

Supplementary Figure 2. Wasting data availability by type and country, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are plotted by data source, type, and sample size (a). Sample size represents 
the number of individual microdata records for each survey. Mean stunting prevalence of the input coordinate or area is mapped (b). 
This database consists of 49,564 clusters and 3,844 polygons with a sample size totaling over 1.10 million children in Africa. 
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         a b 

Supplementary Figure 3. Underweight data availability by type and country, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are plotted by data source, type, and sample size (a). Sample size represents 
the number of individual microdata records for each survey. Mean stunting prevalence of the input coordinate or area is mapped (b). 
This database consists of 50,078 clusters and 4,279 polygons with a sample size of over 1.18 million children in Africa. 
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4.0 Supplementary covariates 

A variety of socioeconomic and environmental variables were used to predict child growth 
failure outcomes. Where available, the finest spatio-temporal resolution of gridded data sets were 
used. In addition to the covariates detailed below, some country-level variables were included: 
lag distributed income per capita, and the proportion of the population with access to adequate 
sanitation, were included in models for stunting, wasting, and underweight. For wasting, the 
mortality rate due to famine, as produced by GBD 201611, was also included.  

Supplementary Table 3. Covariates used in mapping 

Covariate 
Temporal 
resolution 

Source Reference 

Aridity Annual 

Climatic 
Research Unit 
Time-Series 
(CRUTS) 

Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
maximum 
temperature 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
mean temperature 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
minimum 
temperature 

Annual 
CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 

Updated high-resolution grids of monthly climatic 
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Covariate 
Temporal 
resolution 

Source Reference 

observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 
 
University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average Land 
Surface 
Temperature 
(LST) 

Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 
 
Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Daytime LST Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 
 
Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Distance to rivers Static 

Natural Earth 
Data (derived) 

 Natural Earth. Rivers and lake centerlines dataset. 
Available at: 
http://www.naturalearthdata.com/downloads/10m-
physical-vectors/10m-rivers-lake-centerlines/. 
(Accessed: 24th July 2017) 
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Covariate 
Temporal 
resolution 

Source Reference 

Diurnal difference 
in LST 

Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 
 
Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Diurnal 
temperature range 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 
 
University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Enhanced 
Vegetation Index 
(EVI) 

Annual 

MODIS Huete, A., Justice, C. & van Leeuwen, W. MODIS 
vegetation index (MOD 13) algorithm theoretical 
basis document. (1999). 
 
USGS & NASA. Vegetation indices 16-Day L3 
global 500m MOD13A1 dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod13a1. (Accessed: 25th 
July 2017) 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Fertility Annual 

WorldPop 
(derived) 

Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High 
resolution global gridded data for use in population 
studies. Sci. Data 4, sdata20171 (2017). 
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Covariate 
Temporal 
resolution 

Source Reference 

World Pop. Get data. Available at: 
http://www.worldpop.org.uk/data/get_data/. 
(Accessed: 25th July 2017) 

Frost day 
frequency 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017) 

Growing season 
length 

Static 

FAO FAO. GAEZ - Global Agro-Ecological Zones data 
portal. Available at: 
http://www.fao.org/nr/gaez/about-data-portal/en/. 
(Accessed: 25th July 2017) 

FAO. GAEZ - Global Agro-Ecological Zones users 
guide. (2012). 

Irrigation Static 

University of 
Frankfurt 

Goethe-Universität. Generation of a digital global 
map of irrigation areas. Available at: 
https://www.uni-
frankfurt.de/45218039/Global_Irrigation_Map. 
(Accessed: 25th July 2017) 

Malaria incidence Annual 
Malaria Atlas 
Project 

Bhatt, S. et al. The effect of malaria control on 
Plasmodium falciparum in Africa between 2000 
and 2015. Nature 526, 207–211 (2015). 

Educational 
attainment in 
women of 
reproductive age 
(15-49 years old) 

Annual 

Institute for 
Health Metrics 
and 
Evaluation, 
University of 
Washington  

Graetz, N. et al. Mapping local variation in 
educational attainment across Africa. Nature 
https://doi.org/10.1038/nature25761 (2018). 

Nighttime LST Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 
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Covariate 
Temporal 
resolution 

Source Reference 

Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Nighttime lights Annual 

NOAA DMSP Savory et al. Intercalibration and Gaussian Process 
Modeling of Nighttime Lights Imagery for 
Measuring Urbanization Trends in Africa 2000–
2013. Remote Sens. 9, (2017). 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

Annual 

AVHRR NASA & NOAA. Advanced Very High Resolution 
Radiometer (AVHRR) Normalized Difference 
Vegetation Index (NDVI) dataset. Available at: 
https://nex.nasa.gov/nex/projects/1349/. (Accessed: 
25th July 2017) 

Nutritional yield 
for calcium 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Nutritional yield 
for folate 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Nutritional yield 
for iron 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Nutritional yield 
for protein 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Nutritional yield 
for vitamin A 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Nutritional yield 
for vitamin B12 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 
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Covariate 
Temporal 
resolution 

Source Reference 

Nutritional yield 
for zinc 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Population Annual 

WorldPop Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High 
resolution global gridded data for use in population 
studies. Sci. Data 4, sdata20171 (2017). 
 
World Pop. Get data. Available at: 
http://www.worldpop.org.uk/data/get_data/. 
(Accessed: 25th July 2017) 

Potential 
Evapotranspiratio
n (PET) 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 
 
University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Precipitation Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 
 
University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Shannon Diversity 
Index for nutrient 
yield 

Static 

Herrero et al 
(modelled) 

Herrero, M. et al. Farming and the geography of 
nutrient production for human use: a 
transdisciplinary analysis. Lancet Planet. Health 1, 
e33–e42 (2017). 

Soil organic 
carbon stock 

Static 

ISRIC Hengl, T. et al. SoilGrids250m: Global gridded soil 
information based on machine learning. PLOS 
ONE 12, e0169748 (2017). 
 
ISRIC World Soil Information. Explore Layers. 
Available at: 
http://geonode.isric.org/layers/?limit=100&offset=
0. (Accessed: 25th July 2017) 

WWW.NATURE.COM/NATURE | 25

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25760



26 
 

Covariate 
Temporal 
resolution 

Source Reference 

Soil pH Static 

ISRIC Hengl, T. et al. SoilGrids250m: Global gridded soil 
information based on machine learning. PLOS 
ONE 12, e0169748 (2017). 
 
ISRIC World Soil Information. Explore Layers. 
Available at: 
http://geonode.isric.org/layers/?limit=100&offset=
0. (Accessed: 25th July 2017) 

Tassled cap 
brightness 

Annual 

MODIS USGS & NASA. Nadir BRDF- Adjusted 
Reflectance Reflectance 16-Day L3 Global 1km 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mcd43b4. (Accessed: 25th 
July 2017) 
 
Strahler, A. H. & Muller, J.-P. MODIS 
BRDF/Albedo product: algorithm theoretical basis 
document version 5.0. (1999). 
 
Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Tassled cap 
wetness 

Annual 

MODIS USGS & NASA. Nadir BRDF- Adjusted 
Reflectance Reflectance 16-Day L3 Global 1km 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mcd43b4. (Accessed: 25th 
July 2017) 
 
Strahler, A. H. & Muller, J.-P. MODIS 
BRDF/Albedo product: algorithm theoretical basis 
document version 5.0. (1999). 

Travel time to 
nearest settlement 
>50,000 
inhabitants 

Static 

Malaria Atlas 
Project, Big 
Data Institute, 
Nuffield 
Department of 
Medicine, 
University of 
Oxford 

Weiss, D. J. et al. A global map of travel time to 
cities to assess inequalities in accessibility in 2015. 
Nature 533, 333-336 (2018). 
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Covariate 
Temporal 
resolution 

Source Reference 

Urbanicity Annual 

European 
Commission/
GHS 

Pesaresi, M. et al. Operating procedure for the 
production of the Global Human Settlement Layer 
from Landsat data of the epochs 1975, 1990, 2000, 
and 2014. (Publications Office of the European 
Union, 2016). 

Wet day 
frequency 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 
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Supplementary Figure 4. Covariates.  
Thirty-seven covariate raster layers of possible socioeconomic and environmental correlates of CGF in Africa were used as inputs for 
the stacking modelling process. Time-varying covariates are presented for the year 2015. For the year of production of non-time-
varying covariates, please refer to the individual covariate citation in Supplementary Table 3 for additional detail.
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5.0 Supplementary methods 

5.1 Seasonality adjustment 

Weight-for-height z-scores (WHZ) are used to calculate an individual’s moderate and severe 
binary wasting status. As a data preprocessing step, we performed a seasonality adjustment on 
individual-level child weights in order to account for differences in observed child weight that 
may have been due to food scarcity around the month in which the survey was conducted. To 
adjust weight measurements, we fit a model for each region (Extended Data Fig. 2) with a 12-
month seasonal spline, a country fixed effect, and a smooth spline over the duration of our data 
collection using the mgcv package in R and the following formula: 
 

!"#	~	&'' ()*+ℎ +	&./ + + 	0&. 203+)4 3)5*+46 . 
 
!"# is a child’s weight-for-height z-score, ()*+ℎ is integer-valued month of the year (1, …, 
12),	+ is the time of the interview in integer months since the earliest observation of any child in 
the dataset, and	3)5*+46 is a factor variable representing the country where the observation was 
recorded. We modelled the periodic component on months using 12 cyclic cubic regression 
splines basis functions (33) and we accounted for a smooth longer time temporal trend using four 
thin-plate splines (+8). The country effects and the long-term temporal spline were included only 
to help avoid confounding during fitting of the seasonal spline fit and neither country effects nor 
the long-term trend were used in the seasonal adjustment. We then adjusted all observations to 
account for the difference in the seasonal period between the month of the interview and an 
average day of the year as determined by which days align with the mean of the periodic spline. 
See Supplementary Figure 5 for an example and visualisation of how individual data points are 
adjusted to the periodic mean. The impact of this adjustment on the prevalence of wasting is 
minor, and is visualised in Supplementary Figure 6.  

 
Supplementary Figure 5. Periodic seasonality adjustment.  
The fitted seasonal periodic spline for wasting in central sub-Saharan Africa along with the mean 
of the periodic function and an example of the adjustment that would be applied to weight-for-
height z-scores collected in this region in the month of July. 
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Supplementary Figure 6. Cluster and polygon-level seasonality wasting adjustments.  
The sample-size weighted mean cluster and polygon seasonal prevalence adjustments were 
averaged within countries and five-year periods. Areas shown in grey reflect geographic regions 
in which no data were observed for that country within that time period. 
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5.2 Cluster combination and spatial integration over polygon records 

Our individual-level data were collapsed (summarised) into clusters if they could be 
georeferenced to latitude-longitude pairs. Otherwise, we collapsed our individual-level data to 
the smallest polygon that could be referenced. We used survey weights and the survey package in 
R to account for matching our observations to a higher resolution than the representative 
resolution of the survey.12 The survey package was used to adjust the mean response in the 
higher resolution polygons using post-stratification weighted averages,13 but we found that the 
package somewhat regularly produced very large design effects estimates that rendered our 
polygon sample size adjustments to be nonsensical. Instead, we use the classic Kish’s effective 
sample size calculation where the effective sample size for a polygon is calculated as: 

*9:: = 	
∑=> ?
∑=>?

, 

where @A is the survey weight associated with data observation i, and the summations in the 
effective sample size calculation are both taken over all observation within a polygon.14 

Data without latitude and longitude, but that could be geolocated to an administrative area, were 
resampled to generate candidate point locations based on the underlying population of the 
administrative area. The main concept is to leverage covariate values across the polygon when 
performing the regression, while simultaneously accounting for a population-driven survey 
design. The methods used for the resampling are consistent with those used in geospatial 
modelling of under-5 mortality, published previously.15  

For each polygon-level observation, 10,000 points were randomly sampled from within the 
polygon (regardless of the polygon’s area) using the WorldPop total population raster16,17 to 
weight the locations of the draws. K-means clustering was performed on the candidate points to 
generate integration points (1 per 1,000 pixels) used in the modelling. Weights were assigned to 
each integration point proportionally to the number of candidate points that entered into the k-
means cluster, such that the weight of each point represented the number of population-sampled 
locations contained within the K-means cluster location, divided by the number of sampled 
points generated (10,000). Each point generated by this process is assigned the prevalence of 
CGF observed from the survey for that polygon. These sample weights are used in model fit (see 
additional detail on ensemble covariate modelling and model fitting and estimate generation in 
the Supplementary Methods).  

Supplementary Figure 7 shows examples of this resampling process for a survey in which data 
existed for the administrative area of Komo, Gabon. The polygon resampling process was 
repeated three times to show how the spread of point locations, and the magnitude of the weights 
generated using K-means clustering, compare across different iterations of the point-generation 
process (in which point locations are generated at random, such that more populated areas are 
more likely to have been “sampled”). Higher sample weights from the K-means clustering 
process are observed in each iteration near the more densely populated areas of the Komo 
Department.  
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Supplementary Figure 7. Polygon resampling.  
The total population in Komo, Gabon, in the year 2000 (top left), and three different example 
iterations of the polygon resampling process for a survey undertaken in 2000 that contained data 
for Komo, Gabon. 
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5.3 Geostatistical model  

5.3.1 Model geographies 
A total of five models were run for each indicator based on continuous geographic regions within 
Africa chosen to align with the regions used in the Global Burden of Disease Study, which 
determines regions based on both proximity and epidemiological similarity (see tables in 
Supplementary Fig. 1-3 for listing of regions and countries). Minor changes were made to the 
GBD regions to ensure spatial contiguity across Africa (see Extended Data Fig. 2 for an 
illustration of the modelling regions). All data within the spatial region, and within a one-degree 
buffer from the boundaries of each region, were included in each model to minimise edge 
effects.  
 

5.3.2 Ensemble covariate modelling 
An ensemble covariate modelling method was implemented in order to select covariates and 
capture possible non-linear effects and complex interactions between them.27 For each region, 
three sub-models were fit to our dataset, using all of our covariate data as explanatory predictors: 
generalised additive models, boosted regression trees, and lasso regression. Country level fixed 
effects were also included in the boosted regression tree model as dummy-coded covariates. 
Sample weights are used in sub-models, where applicable, such that cluster locations with 
latitude and longitude had a sample weight of 1, while cluster locations where the latitude and 
longitude was generated by the polygon resampling process had a weight based on the K-means 
clustering process (see 5.2, Cluster combination and spatial integration over polygon records).  
 
Each sub-model is fit using five-fold cross-validation to avoid overfitting. The out-of-sample 
predictions from across the five holdouts are compiled into a single comprehensive set of 
predictions from that model. Additionally, the same sub-models were also run using 100% of the 
data, and a full set of in-sample predictions were created. The five sets of out-of-sample sub-
model predictions are fed into the full geostatistical model as the explanatory covariates when 
performing the model fit. The in-sample predictions from the sub-models are used as the 
covariates when generating predictions using the fitted full geostatistical model. A recent study 
has shown that this ensemble approach can improve predictive validity by up to 25% over an 
individual model.27  
 
Predictions from each sub-model are generated based on patterns and relationships between the 
raw covariates and prevalence survey data, while predictions from the full geostatistical model 
are generated based on patterns and relationships between the predictions from the ensemble of 
sub-models and prevalence survey data. To discover the relationships between the sub-model 
prediction layers (used as covariates in the full geostatistical model) and the prevalence data, the 
only values of the covariates (sub-model prediction layers) “seen” by the model are the values 
underlying the locations of surveys. As such, it is possible that estimates will be generated in 
areas where the values of the covariates exceed the minimum and maximum values observed by 
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the model. In these areas, the estimates are generated by extrapolating from the patterns observed 
within the range of covariates underlying the survey data.  
 
Supplementary Fig. 8-10 illustrate that very few estimates were generated due to the 
extrapolation of covariate values. The maps on the right panel of the graphics shows the total 
number of instances (summed over each of the sub-models, for each year of covariate values, 
from 2000 to 2010) that the model extrapolated estimates for each 5x5 km pixel, divided by the 
total number of sub-model-years in which predictions were generated. The stacked bar chart on 
the left shows the number of pixels in which the model extrapolated estimates, divided by the 
total number of pixels within sub-models, and across all years, broken down by sub-model type. 
 
Supplementary Fig. 8-10 are calculated in two ways: such that the covariate values at each pixel 
are compared to the range observed in the full time series for each modelling region (top panel), 
and to the range observed within each year, for each modelling region (bottom panel). When the 
minimum and maximum covariate values are calculated across the full time series of the data 
(top panel), it is revealed that very few of the pixels were extrapolated when considering the 
range of covariates across the time series. The same figure, calculated such that pixel covariate 
values are compared to the minimum and maximum observed within each given year (bottom 
panel), reveals more nuance and shows that estimates for pixels were frequently generated based 
on patterns observed in the full time series of the data, but not within the year the estimates were 
generated for. 
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Supplementary Figure 8. Stunting covariate extrapolation.  
The map (right) shows the percentage of year-sub-model combinations for each pixel that 
required extrapolation of covariate patterns for prediction generation within the full geostatistical 
model. The stacked bar chart (left) shows the percentage of pixels extrapolated out of the total 
number of pixels from all sub-models that were extrapolated, broken down by sub-model type, 
for each year. This graphic is calculated two ways: such that the covariate values at each pixel 
are compared to the minimum and maximum of the covariate values observed across all time 
(top) and observed within the year for which the estimates were generated (bottom). Areas in 
grey reflect pixels in which no sub-model-years required extrapolation.  
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Supplementary Figure 9. Wasting covariate extrapolation.  
The map (right) shows the percentage of year-sub-model combinations for each pixel that 
required extrapolation of covariate patterns for prediction generation within the full geostatistical 
model. The stacked bar chart (left) shows the percentage of pixels extrapolated out of the total 
number of pixels from all sub-models that were extrapolated, broken down by sub-model type, 
for each year. This graphic is calculated two ways: such that the covariate values at each pixel 
are compared to the minimum and maximum of the covariate values observed across all time 
(top) and observed within the year for which the estimates were generated (bottom). Areas in 
grey reflect pixels in which no sub-model-years required extrapolation. 
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Supplementary Figure 10. Underweight covariate extrapolation.  
The map (right) shows the percentage of year-sub-model combinations for each pixel that 
required extrapolation of covariate patterns for prediction generation within the full geostatistical 
model. The stacked bar chart (left) shows the percentage of pixels extrapolated out of the total 
number of pixels from all sub-models that were extrapolated, broken down by sub-model type, 
for each year. This graphic is calculated two ways: such that the covariate values at each pixel 
are compared to the minimum and maximum of the covariate values observed across all time 
(top) and observed within the year for which the estimates were generated (bottom). Areas in 
grey reflect pixels in which no sub-model-years required extrapolation. 
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Supplementary Figure 11. Ensemble predicted rasters.  
Predicted 2015 rasters, for use as covariates in the INLA modelling, shown for the eastern sub-
Saharan Africa region. The gam plot shows the predictions from a generalised additive model fit, 
the gbm plot shows the predictions from a boosted regression tree fit, the lasso plot shows the 
predictions from a lasso penalised regression model fit. 
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5.3.3 Model description 
Binomial count data are modelled within a Bayesian hierarchical modelling framework using a 
logit link function and a spatially and temporally explicit hierarchical generalised linear 
regression model to fit prevalence of each of our indicators in five regions of Africa as defined in 
GBD (Northern, Western, Southern, Central, and Eastern; see Extended Data Fig. 2).18 For each 
GBD region, we explicitly write the hierarchy that defines our Bayesian model as follows:  
 

BA|8A, 	EA ∼ GH*)(H0I 8A, 	EA  
 

I)JH+ 8A = 	KL + MNO + PQRA + PA 
 

∑O	 = 1 
 

PA ∼ E(0, VWXY ) 
 

PQR|Σ[\]^_, 	Σ.A`9 ∼ ab(0, 	Σ[\]^_ ⊗	Σ.A`9) 
 

Σ[\]^_ = 	
2efg
h×Γ k × lm g×Κg lm  

 
Σ.A`9o,p = q 	.rf.s . 

 
For each risk factor and region, we model the number of children at cluster H, among a sample 
size, EA, who are afflicted with a risk factor as binomial count data, BA. We have suppressed the 
notation, but the counts, BA, probabilities, 8A, predictions from the three submodels MN, and 
residual terms P∗ are all indexed at a space-time coordinate. The probabilities, 8A represent both 
the annual prevalence at the space-time location and the probability that an individual child will 
be afflicted with the risk factor given that they live at that particular location. The logit of annual 
prevalence, 8A, of our indicators was modelled as a linear combination of the three sub-models 
(GAM, BRT, and lasso), MN,a correlated spatiotemporal error term, PQRA, and an independent 
nugget effect,	PA. Coefficients, O, on the sub-models represent their respective predictive 
weighting in the mean logit link and are constrained to sum to 1. In order for this constraint to 
make any sense we ensure that the predictions from the sub-models enter into INLA in the link 
space (logit) without having been centre-scaled. The joint error term, PQR, accounts for residual 
spatiotemporal autocorrelation between individual data points that remains after accounting for 
the predictive effect of the sub-model covariates, and the nugget, PA, which is an independent 
error term for each data point, representing measurement error for that observation. The 
residuals, PQR, are modelled as a three-dimensional Gaussian process in space-time centered at 
zero and with a covariance matrix constructed from a Kroenecker product of spatial and temporal 
covariance kernels. The spatial covariance, Σ[\]^_, is modelled using an isotropic and stationary 
Matérn function,19 and temporal covariance, Σuvw_, as an annual autoregressive order 1 (AR1) 
function over the 17 years represented in the model. This approach leveraged the data’s residual 
correlation structure to more accurately predict prevalence estimates for locations with no data, 
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while also propagating the dependence in the data through to uncertainty estimates.20 The 
posterior distributions were fit using computationally efficient and accurate approximations in R-
INLA21,22 (integrated nested Laplace approximation) with the stochastic partial differential 
equations (SPDE)23 approximation to the Gaussian process residuals. Pixel-level uncertainty 
intervals (UIs) were generated from 1,000 draws (i.e., statistically plausible candidate maps)24 
created from the posterior-estimated distributions of modelled parameters. 
 

5.3.4 Priors 
The following priors were used for all three of our child growth failure models:  

• KL ∼ E x = 0, VY = 3Y ,  
• O ∼AAz E x = e

#	_|[_w}~_	w�Ä_~[ , V
Y = 3Y ,	  

• I)J eÅÇ
efÇ ∼ E(x = 0, VY = 1/0.15), 

• I)J e
ÖÜáà? ∼ I)JJ0((0 â = 1, ä = 2 . 

• ãe = log h ∼ E(xèê, Vèê
Y ) 

• ãY = log l ∼ E(xY, Vè?
Y ). 

 
Given that our covariates used in INLA, i.e. the predicted outputs from the ensemble models, 
should be on the same scale as our predictive target, we believe that the intercept in our model 
should be close to zero and that the regression coefficients should sum to one. As such, we have 
chosen the prior for our intercept to be N(0, σY = 3Y), and the prior for the fixed effect 
coefficients to be N( e

#	_|[_w}~_	w�Ä_~[ , σ
Y = 3Y). The prior on the temporal correlation parameter 

ρ is chosen to be mean zero, showing no prior preference for either positive or negative auto-
correlation structure, and with a distribution that is wide enough such that within three standard 
deviations of the mean the prior includes values of ρ	ranging from -0.95 to 0.95. The priors on 
the random effects variances were chosen to be relatively loose given that we believe our fixed 
effects covariates should be well correlated with our outcome of interest, which might suggest 
relatively small random effects values. At the same time, we wanted to avoid using a prior that 
was so diffuse as to actually put high prior weight on large random effect variances. For stability, 
we used the uncorrelated multivariate normal priors that INLA automatically determines (based 
on the finite elements mesh) for the log-transformed spatial hyperparameters l and h. The mean 
and variance parameters for the hyperpriors selected by INLA for the meshes in each region can 
be found in Supplementary Table 4. In our parameterization we represent â and ä in the 
loggamma distribution as scale and shape, respectively.  
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Supplementary Table 4. Spatial hyperparameter priors by region  

 
Region 

îïñ  óïñò  îò óïòò  

Central sub-Saharan Africa -0.23082 10 -1.03469 10 
Eastern sub-Saharan Africa 0.104454 10 -1.36997 10 
Northern Africa 0.22028 10 -1.48579 10 
Southern sub-Saharan Africa -0.17385 10 -1.09166 10 
Western sub-Saharan Africa 0.181774 10 -1.44729 10 

 

5.3.5 Mesh construction 
We constructed the finite elements mesh for the stochastic partial differential equation 
approximation to the Gaussian process regression using a simplified polygon boundary (in which 
coastlines and complex boundaries were smoothed) for each of the regions within our model. We 
set the inner mesh triangle maximum edge length (the mesh size for areas over land) to be 0.2 
degrees, and the buffer maximum edge length (the mesh size for areas over the ocean) to be 5.0 
degrees. An example finite elements mesh constructed for eastern sub-Saharan mesh can be 
found in Supplementary Figure 12. 
 

5.3.6 Model fitting and estimate generation 
Models were fit in INLA with methods consistent with those used in geospatial modelling of 
under-5 mortality, published previously.15  
 
Resampling K-means weights (Supplementary Methods 5.2) were used within the INLA fit by 
multiplying the corresponding log-likelihood evaluation for the specific observation by the 
observation’s K-means weight. These weights are used to ensure that we do not artificially 
inflate the amount of information in the dataset by effectively using them to inflate the dispersion 
in the log-likelihood for resampled-polygon points. While the model this induces is not 
necessarily generative it does yield a well-defined target distribution. This is analogous to how 
weighting is often done in generalized additive models.25 Data points that could be georeferenced 
to latitude-longitude locations were assigned a weight of 1, ensuring that when the log-likelihood 
contribution from that observation was evaluated it contributed only to the log-likelihood at the 
observation’s space-time location. For cluster locations generated based on the polygon 
resampling process, the log-likelihood of those points contributed proportionate to the K-means 
weights, effectively diffusing the evaluation of the observation across the polygon. 
 
As part of the ensemble modelling process, prediction surfaces from the out-of-sample ensemble 
sub-models were used as covariates in the spatiotemporal model. Estimates of the fixed effects 
beta coefficients derived from the contribution of each of the sub-models to INLA’s predicted 
prevalence estimates, in conjunction with parameter estimates of the contribution of location and 
time (based on estimated parameters described in model description in the Supplementary 
Methods 5.3.3) were generated and can be found in Supplementary Tables 5-7. To create final 
estimates, the in-sample prediction surfaces of prevalence from the sub-models (serving as 
covariates) were used as covariates in conjunction with the fitted random effects from INLA to 
predict and calculate estimates of prevalence for each pixel in each year.  
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Our implementation of INLA using the R-INLA software relies on a Gaussian approximation of 
the full conditional distribution of latent variables, and uses the empirical Bayes approximation 
for the hyperparemeters.26 We have tried the full hyperparameter grid integration and CCD 
integration in various settings and have found our models to be nearly indistinguishable. For the 
sake of computing resource efficiency (with which we always operate at the margins), we have 
proceeded with using the empirical Bayes procedure. In a very similar setting with malaria 
household survey data other authors (including the senior author here) compared the INLA 
results directly with results from Hamiltonian Markov Chain Monte Carlo and found nearly 
identical results between the two fits.27 
	
All estimates were generated by taking 1,000 draws from the posterior distribution, which 
yielded 1,000 candidate maps used to summarise the pixel- and aggregated-level statistics. For 
estimates at the pixel level, these draws were used directly to generate estimates and uncertainty. 
Aggregated estimates, in which estimates at the pixel level were summarised to administrative 
boundaries, were generated by creating population-weighted averages for each administrative 
boundary, for each draw. 95% uncertainty intervals around the mean of our estimates (see 
Supplementary Fig. 13-15) were generated by taking the 5% and 95% quantiles of each of the 
draws, at the pixel or administrative level.  
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Supplementary Figure 12. Finite elements mesh.  
The finite elements mesh used to fit the space-time correlated error for the Eastern sub-Saharan 
Africa (ESSA) region overlaid on the countries in ESSA. Both the fine-scale mesh over land in 
the modelling region and the coarser buffer region mesh are shown. The simplified region 
polygon used to determine the boundary for the modelling region is shown in blue. 
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5.3.7 Model Results 
Fitted parameters and hyperparameters, as well as their 95% uncertainty intervals are shown by 
indicator and region in Supplementary Tables 5-7. Spatial hyperparameters (h and l) and their 
uncertainties have been transformed into more interpretable nominal variance and range 
parameters. Nominal variance, approximating the variance at any single point, is calculated as 
*)(. ô04 = 4õlYhY, and nominal range, approximating the distance before spatial correlation 
decays by 90%, as 40*Jú = 8/l.[20]
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Supplementary Table 5. Stunting fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters from the stunting models by 
region. The fixed effects covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted 
values for the spatiotemporal field hyperparameters and the precisions (inverse variance) for our random effects are shown in the 
bottom five rows. 

 Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 
int -0.090 -0.042 0.006 -0.065 -0.022 0.021 -0.075 -0.036 0.004 -0.106 -0.039 0.028 -0.064 -0.023 0.017 
gam 0.295 0.466 0.637 0.205 0.312 0.419 0.150 0.266 0.382 0.268 0.475 0.681 0.186 0.306 0.426 
gbm 0.407 0.567 0.726 0.547 0.649 0.750 0.715 0.845 0.974 0.507 0.773 1.040 0.265 0.355 0.446 
lasso -0.237 -0.032 0.172 -0.082 0.039 0.160 -0.252 -0.111 0.031 -0.501 -0.248 0.005 0.190 0.338 0.487 
Nominal 
Range 3.212 4.197 5.585 1.717 1.957 2.226 0.997 1.224 1.492 2.698 4.259 6.836 2.092 2.384 2.685 
Nominal 
Variance 0.025 0.035 0.047 0.068 0.081 0.092 0.071 0.085 0.101 0.015 0.026 0.045 0.062 0.071 0.082 
Ar1 ! -0.116 0.152 0.403 0.478 0.580 0.653 -0.030 0.102 0.222 0.120 0.506 0.775 0.123 0.223 0.316 
Precision for 
IID.ID 0.014 0.016 0.019 0.068 0.075 0.081 0.025 0.032 0.040 0.019 0.023 0.028 0.024 0.028 0.032 
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Supplementary Table 6. Wasting fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters from the wasting models by 
region. The fixed effects covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted 
values for the spatiotemporal field hyperparameters and the precisions (inverse variance) for our random effects are shown in the 
bottom five rows. 

 Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 

int -0.112 -0.042 0.027 -0.088 -0.045 -0.003 -0.094 -0.030 0.033 -0.100 -0.052 -0.004 -0.070 -0.012 0.046 
gam 0.105 0.262 0.419 0.181 0.315 0.448 0.150 0.353 0.555 0.130 0.253 0.375 0.302 0.460 0.617 
gbm 0.117 0.222 0.328 0.603 0.715 0.827 0.616 0.806 0.995 0.736 0.850 0.964 0.734 0.886 1.037 
lasso 0.349 0.516 0.682 -0.177 -0.030 0.118 -0.329 -0.158 0.013 -0.238 -0.103 0.032 -0.532 -0.346 -0.159 
Nominal 
Range 2.235 2.707 3.245 1.505 1.743 2.021 1.250 3.429 12.522 1.034 1.308 1.637 3.309 5.441 9.142 
Nominal 
Variance 0.088 0.106 0.128 0.073 0.084 0.096 0.002 0.011 0.038 0.090 0.110 0.136 0.010 0.019 0.035 
Ar1 ! 0.377 0.513 0.630 -0.091 0.021 0.128 -0.782 -0.178 0.521 -0.306 -0.157 0.001 -0.505 -0.011 0.491 
Precision for 
IID.ID 0.071 0.082 0.094 0.028 0.034 0.040 0.039 0.054 0.073 0.024 0.031 0.039 0.019 0.023 0.029 
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Supplementary Table 7. Underweight fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters from the underweight models by 
region. The fixed effects covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted 
values for the spatiotemporal field hyperparameters and the precisions (inverse variance) for our random effects are shown in the 
bottom five rows. 
 

 Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 

int -0.096 -0.037 0.021 -0.076 -0.024 0.027 -0.086 -0.020 0.046 -0.098 -0.031 0.036 -0.089 -0.046 -0.003 
gam 0.243 0.425 0.608 0.268 0.390 0.513 0.325 0.446 0.567 0.191 0.398 0.606 0.098 0.213 0.329 
gbm 0.544 0.717 0.889 0.400 0.500 0.599 0.304 0.429 0.554 0.351 0.569 0.786 0.402 0.496 0.591 
lasso -0.377 -0.142 0.093 -0.021 0.110 0.241 -0.040 0.125 0.291 -0.177 0.033 0.242 0.163 0.290 0.418 
Nominal 
Range 3.399 4.662 6.400 2.018 2.337 2.759 1.859 2.354 2.991 2.545 4.442 7.937 1.806 2.022 2.284 
Nominal 
Variance 0.022 0.032 0.048 0.071 0.083 0.098 0.092 0.118 0.151 0.009 0.021 0.042 0.073 0.082 0.097 
Ar1 ! 0.065 0.356 0.600 0.529 0.625 0.706 -0.261 -0.086 0.100 -0.163 0.348 0.714 0.267 0.360 0.448 
Precision 
for IID.ID 0.014 0.017 0.020 0.068 0.075 0.083 0.016 0.020 0.024 0.023 0.029 0.036 0.030 0.034 0.039 

WWW.NATURE.COM/NATURE | 47

doi:10.1038/nature25760 SUPPLEMENTARY INFORMATIONRESEARCH



48 
 

 
Supplementary Figure 13. Stunting posterior means and 95% uncertainty intervals. 
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Supplementary Figure 14. Wasting posterior means and 95% uncertainty intervals. 
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Supplementary Figure 15. Underweight posterior means and 95% uncertainty intervals. 
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5.4 Model validation 

5.4.1 In-sample metrics 
For each indicator, we generated a suite of diagnostic plots for each region and country 
estimated, in order to assess the in-sample performance of our model and compare to national-
level estimates produced by GBD.   
 
To explore residual error over space and time, absolute error (data minus predicted posterior 
mean estimates at the corresponding pixels) were produced at five-year intervals (2000, 2005, 
2010, and 2015) for each modelled region (see Supplementary Fig. 25-27).  
 

5.4.2 Metrics of predictive validity 
In order to assess the predictive validity of our estimates, we validated our models using spatially 
stratified five-fold out-of-sample cross-validation.28 To construct each spatial fold, we used a 
modified bi-tree algorithm to spatially aggregate data points. This algorithm recursively 
partitions two-dimensional space, alternating between horizontal and vertical splits on the 
weighted data sample size medians, until the data contained within each spatial partition are of a 
similar sample size. The depth of recursive partitioning is constrained by the target sample size 
within a partition and the minimum number of clusters or pseudo-clusters allowed within each 
spatial partition (in this case, a minimum sample size of 500 was used). These spatial partitions 
are then allocated to one of five folds for cross-validation. For validation, each geostatistical 
model was run five times, each time holding out data from one of the folds, generating a set of 
out-of-sample predictions for the held-out data. For each indicator, a full suite of out-of-sample 
predictions over the entire dataset was generated by combing the out-of-sample predictions from 
the five cross-validation runs. 
 
Using these out-of-sample predictions, we then calculated mean error (ME, or bias), root-mean-
squared-error (RMSE, which summarises total variance), coefficient of variation (CoV, defined 
to be the standard deviation divided by the mean and multiplied by 100, which is a measure of 
relative variability), and 95% coverage of our predictive intervals (the proportion of observed 
out-of-sample data that fall within our predicted 95% credible intervals) aggregated up to 
different administrative levels (levels 0, 1, and 2) as defined by FAO Global Administrative Unit 
Layers (GAUL).29 Administrative level 0 borders correspond to national boundaries, 
administrative level 1 borders generally correspond to regions, provinces, or state-level 
boundaries within a country, and administrative level 2 borders correspond to the next finer 
subdivision, often districts, within regions. These metrics are summarised in Supplementary 
Tables 4-12 for each indicator and are calculated across all regions. Included in the sample tables 
for comparison are the same metrics calculated on in-sample predictions.  
  

WWW.NATURE.COM/NATURE | 51

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25760



52 
 

5.4.3 Model comparison 
To demonstrate the utility if the stacking ensemble, for each indicator we ran five, five-fold 
cross-validation holdout experiments using different combinations of covariates and random 
effects. The following five models were compared: 
 

1) Raw covariates: 
logit p' = 	β+ + X'β./0 + ϵ' 

 
2) Stacking predictions as covariates: 

logit p' = 	β+ + X'β23/45 + ϵ' 
 

3) Gaussian Process (GP): 
logit p' = 	β+ + ϵ678 + ϵ' 

 
4) Raw covariates + GP: 

logit p' = 	β+ + X'β./0 + ϵ678 + ϵ' 
 

5) Stacking covariates + GP: 
logit p' = 	β+ + X'β23/45 + ϵ678 + ϵ' 

For stunting, wasting, and underweight we have aggregated our out-of-sample results (RMSE, 
coverage, and bias) from the cross-validation to the spatial resolution used to generate the 5-folds 
(i.e. to quad-tree leafs) and compared these numbers to the raw prevalence data observations 
which have been aggregated in the same way. By doing this at the draw level from each of the 5 
experiments we can compare out-of-sample bias, root-mean-square error, and 95% predictive 
coverage. Across regions and years, we see that using the stacking ensemble in conjunction with 
the Gaussian process tends to improve our out-of-sample predictive metrics across the board. 
These metrics are plotted for comparison in Supplementary Fig. 16-18. 
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Supplementary Figure 16. Stunting out-of-sample model comparisons. 

Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. “Raw Covs” is the INLA model fit with 
linear terms on all raw satellite covariates; “Stacked covs” corresponds to an INLA fit with all stacking ensemble prediction surfaces; 
“GP” is fit only with the space-time Gaussian process; “Raw + GP” is fit with linear terms on all raw covariates and the space-time 
Gaussian process; “Stacked + GP” is fit with all stacking surfaces and the space-time Gaussian process. Red lines and text draw your 
attention to the region of the plot that indicates best performance (low bias, low RMSE, and 95% coverage). 
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Supplementary Figure 17. Wasting out-of-sample model comparisons. 

Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. “Raw Covs” is the INLA model fit with 
linear terms on all raw satellite covariates; “Stacked covs” corresponds to an INLA fit with all stacking ensemble prediction surfaces; 
“GP” is fit only with the space-time Gaussian process; “Raw + GP” is fit with linear terms on all raw covariates and the space-time 
Gaussian process; “Stacked + GP” is fit with all stacking surfaces and the space-time Gaussian process. Red lines and text draw your 
attention to the region of the plot that indicates best performance (low bias, low RMSE, and 95% coverage). 
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Supplementary Figure 18. Underweight out-of-sample model comparisons. 

Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. “Raw Covs” is the INLA model fit with 
linear terms on all raw satellite covariates; “Stacked covs” corresponds to an INLA fit with all stacking ensemble prediction surfaces; 
“GP” is fit only with the space-time Gaussian process; “Raw + GP” is fit with linear terms on all raw covariates and the space-time 
Gaussian process; “Stacked + GP” is fit with all stacking surfaces and the space-time Gaussian process. Red lines and text draw your 
attention to the region of the plot that indicates best performance (low bias, low RMSE, and 95% coverage). 
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5.4.4 Stunting validation metrics 
Supplementary Table 8. Predictive metrics for stunting aggregated to admin 0.  
The out-of-sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 4325.853 -0.004 0.012 2.782 0.992 0.973 
2005 FALSE 4707.000 0.000 0.014 3.517 0.984 0.947 
2010 FALSE 6406.000 -0.005 0.013 3.791 0.989 0.943 
2015 FALSE 5597.084 -0.013 0.021 6.121 0.978 0.949 

 
Supplementary Table 9. Predictive metrics for stunting aggregated to admin 1. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 211.609 -0.004 0.032 7.538 0.963 0.972 
2005 FALSE 308.102 0.000 0.031 7.618 0.961 0.948 
2010 FALSE 337.062 -0.005 0.034 9.597 0.957 0.943 
2015 FALSE 377.000 -0.013 0.032 9.512 0.963 0.949 

 
Supplementary Table 10. Predictive metrics for stunting aggregated to admin 2. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 27.693 -0.004 0.048 11.386 0.922 0.972 
2005 FALSE 33.059 0.000 0.052 12.852 0.904 0.947 
2010 FALSE 41.054 -0.005 0.059 16.671 0.892 0.943 
2015 FALSE 36.000 -0.013 0.066 19.709 0.859 0.948 

 
Supplementary Table 11. Predictive metrics for stunting aggregated to holdout units. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 555.000 -0.004 0.021 4.962 0.979 0.973 
2005 FALSE 677.671 0.000 0.025 6.063 0.968 0.947 
2010 FALSE 713.475 -0.005 0.025 7.090 0.967 0.943 
2015 FALSE 803.370 -0.013 0.026 7.575 0.970 0.945 
2000 TRUE 555.000 0.000 0.041 9.696 0.914 0.941 
2005 TRUE 677.671 0.002 0.036 9.014 0.929 0.932 
2010 TRUE 713.475 -0.007 0.041 11.585 0.906 0.915 
2015 TRUE 803.370 -0.012 0.034 10.043 0.935 0.938 
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Supplementary Figure 19. Stunting admin 0 aggregation in-sample.  
Comparison of in-sample stunting predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 20. Stunting admin 0 aggregation out-of-sample.  
Comparison of out-of-sample stunting predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
 

WWW.NATURE.COM/NATURE | 58

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25760



59 
 

 

 
 
Supplementary Figure 21. Stunting admin 1 aggregation in-sample.  
Comparison of in-sample stunting predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 22. Stunting admin 1 aggregation out-of-sample.  
Comparison of out-of-sample stunting predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 23. Stunting holdout units aggregation in-sample.  
Comparison of in-sample stunting predictions aggregated to holdout units generated from 
recursive quad-tree with 95% uncertainty intervals plotted against aggregated data observations 
from the same spatial region. 
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Supplementary Figure 24. Stunting holdout units aggregation out-of-sample.  
Comparison of out-of-sample predictions aggregated to holdout units generated from recursive 
quad-tree with 95% uncertainty intervals plotted against aggregated data observations from the 
same spatial region. 
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5.4.5 Wasting validation metrics 
Supplementary Table 12. Predictive metrics for wasting aggregated to admin 0.  
The out-of-sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 4335.433 -0.005 0.013 11.698 0.976 0.969 
2005 FALSE 4050.000 -0.001 0.011 11.698 0.977 0.940 
2010 FALSE 6412.000 -0.002 0.011 10.558 0.981 0.955 
2015 FALSE 5223.361 -0.001 0.006 6.908 0.992 0.962 

 
Supplementary Table 13. Predictive metrics for wasting aggregated to admin 1. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 208.500 -0.005 0.022 20.397 0.924 0.969 
2005 FALSE 300.517 -0.001 0.020 20.645 0.945 0.941 
2010 FALSE 347.000 -0.002 0.020 19.644 0.953 0.956 
2015 FALSE 368.500 -0.001 0.021 25.380 0.945 0.962 

 
Supplementary Table 14. Predictive metrics for wasting aggregated to admin 2. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 27.269 -0.005 0.029 26.885 0.879 0.969 
2005 FALSE 32.833 -0.001 0.030 30.953 0.891 0.943 
2010 FALSE 41.354 -0.002 0.034 34.088 0.881 0.955 
2015 FALSE 35.000 -0.001 0.043 50.796 0.831 0.962 

 
Supplementary Table 15. Predictive metrics for wasting aggregated to holdout units. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 605.000 -0.005 0.015 14.015 0.950 0.970 
2005 FALSE 671.144 -0.001 0.016 15.909 0.958 0.943 
2010 FALSE 689.981 -0.002 0.015 15.558 0.961 0.955 
2015 FALSE 809.000 -0.001 0.017 20.148 0.939 0.963 
2000 TRUE 605.000 -0.006 0.023 21.513 0.873 0.943 
2005 TRUE 671.144 -0.001 0.022 22.071 0.916 0.930 
2010 TRUE 689.981 -0.003 0.023 22.827 0.912 0.938 
2015 TRUE 809.000 -0.001 0.023 27.489 0.877 0.950 
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Supplementary Figure 25. Wasting admin 0 aggregation in-sample.  
Comparison of in-sample wasting predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 26. Wasting admin 0 aggregation out-of-sample.  
Comparison of out-of-sample wasting predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 27. Wasting admin 1 aggregation in-sample.  
Comparison of in-sample wasting predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 28. Wasting admin 1 aggregation out-of-sample.  
Comparison of out-of-sample wasting predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 29. Wasting holdout units aggregation in-sample.  
Comparison of in-sample wasting predictions aggregated to holdout units generated from 
recursive quad-tree with 95% uncertainty intervals plotted against aggregated data observations 
from the same spatial region. 
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Supplementary Figure 30. Wasting holdout units aggregation out-of-sample.  
Comparison of out-of-sample wasting predictions aggregated to holdout units generated from 
recursive quad-tree with 95% uncertainty intervals plotted against aggregated data observations 
from the same spatial region. 
 
   

WWW.NATURE.COM/NATURE | 69

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25760



70 
 

5.4.6 Underweight validation metrics 
Supplementary Table 16. Predictive metrics for underweight aggregated to admin 0.  
The out-of-sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 4424.000 4424.000 -0.003 0.014 5.638 0.991 
2005 FALSE 4837.000 4837.000 -0.003 0.012 5.584 0.990 
2010 FALSE 7074.000 7074.000 -0.006 0.009 4.614 0.996 
2015 FALSE 5657.082 5657.082 -0.003 0.010 5.429 0.992 

 
Supplementary Table 17. Predictive metrics for underweight aggregated to admin 1 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 214.000 -0.003 0.029 12.076 0.967 0.972 
2005 FALSE 312.500 -0.003 0.024 11.366 0.970 0.955 
2010 FALSE 364.062 -0.006 0.021 10.496 0.982 0.951 
2015 FALSE 388.326 -0.003 0.024 13.386 0.972 0.956 

 
Supplementary Table 18. Predictive metrics for underweight aggregated to admin 2 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 27.774 -0.003 0.041 16.930 0.939 0.972 
2005 FALSE 33.567 -0.003 0.040 18.749 0.926 0.954 
2010 FALSE 43.969 -0.006 0.042 20.774 0.933 0.951 
2015 FALSE 36.849 -0.003 0.054 29.737 0.889 0.957 

 
Supplementary Table 19. Predictive metrics for underweight aggregated to holdout units 

Year OOS Median SS Mean err. RMSE CoV (%) Corr. 95% Cov. 
2000 FALSE 550.987 -0.003 0.020 8.465 0.978 0.972 
2005 FALSE 641.625 -0.003 0.021 9.623 0.974 0.954 
2010 FALSE 713.000 -0.006 0.018 8.631 0.984 0.951 
2015 FALSE 807.000 -0.003 0.019 10.629 0.974 0.957 
2000 TRUE 550.987 -0.003 0.032 13.472 0.943 0.947 
2005 TRUE 641.625 -0.003 0.029 13.673 0.946 0.945 
2010 TRUE 713.000 -0.006 0.029 14.064 0.953 0.930 
2015 TRUE 807.000 -0.001 0.030 16.657 0.934 0.948 
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Supplementary Figure 31. Underweight admin 0 aggregation in-sample.  
Comparison of in-sample underweight predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 32. Underweight admin 0 aggregation out-of-sample.  
Comparison of out-of-sample underweight predictions aggregated to admin 0 with 95% 
uncertainty intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 33. Underweight admin 1 aggregation in-sample.  
Comparison of in-sample underweight predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 34. Underweight admin 1 aggregation out-of-sample.  
Comparison of out-of-sample underweight predictions aggregated to admin 1 with 95% 
uncertainty intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 35. Underweight holdout units aggregation in-sample.  
Comparison of in-sample predictions aggregated to holdout units generated from recursive quad-
tree with 95% uncertainty intervals plotted against aggregated data observations from the same 
spatial region. 
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Supplementary Figure 36. Underweight holdout units aggregation out-of-sample.  
Comparison of out-of-sample predictions aggregated to holdout units generated from recursive 
quad-tree with 95% uncertainty intervals plotted against aggregated data observations from the 
same spatial region. 
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5.4.7 Absolute error plots 

 
Supplementary Figure 37. Plots of stunting bias in Africa out-of-sample.  
Colour indicates magnitude of out-of-sample error, size of the points represents the sample size 
of the observed cluster or pseudocluster, and transparency represents the weight of the cluster or 
pseudocluster. 
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Supplementary Figure 38. Plots of wasting bias in Africa out-of-sample.  

Colour indicates magnitude of out-of-sample error, size of the points represents the sample size 
of the observed cluster or pseudocluster, and transparency represents the weight of the cluster or 
pseudocluster. 
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Supplementary Figure 39. Plots of underweight bias in Africa out-of-sample.  

Colour indicates magnitude of out-of-sample error, size of the points represents the sample size 
of the observed cluster or pseudocluster, and transparency represents the weight of the cluster or 
pseudocluster. 
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5.4.8 Post estimation calibration to national estimates 
 
In order to leverage national-level data included in GBD 2016, but outside the scope of our 
current geospatial modelling framework, and to ensure perfect calibration between these 
estimates and GBD 2016 national-level estimates, we performed a post hoc calibration to each of 
our 1,000 candidate maps.11 For each posterior draw we calculated population-weighted pixel 
aggregations to a national-level and compared these country-year estimates to the analogous and 
available GBD 201611 country-years (all countries for 2000, 2005, 2010, and 2016). To generate 
2015 national-level estimates for use in calibrating our 2015 5x5 km maps, we linearly 
interpolated between 2010 and 2016 estimates. We defined the raking factor to be the ratio 
between the GBD 201611 estimate and our current estimates and linearly interpolated raking 
factors in a country between the available years. Finally, we multiplied each of our pixels in a 
country-year by its associated raking factor. This ensures perfect calibration between our 
geospatial estimates and GBD 201611 national-level estimates, while preserving our estimated 
within-country geospatial and temporal variation. 
 
To allow comparison between our modelled estimates and the GBD 201611 national-level 
estimates to which they were calibrated, Supplementary Fig. 28-30 plot mean uncalibrated 
estimates from the model-based geostatistics (MBG) process aggregated to the national-level 
(“MBG mean”) as compared to the GBD national estimates (“GBD mean”) for all modelled 
years. The median raking factors for stunting, wasting, and underweight were 0.983 (interquartile 
range: 0.917-1.052), 1.055 (IQR: 0.947-1.207), and 0.985 (IQR: 0.903-1.064), respectively. 
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Supplementary Figure 40. Comparison of aggregated stunting MBG estimates to GBD 
2016 stunting estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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Supplementary Figure 41. Comparison of aggregated wasting MBG estimates to GBD 2016 
stunting estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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Supplementary Figure 42. Comparison of aggregated underweight MBG estimates to GBD 
2016 stunting estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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5.4.9 Verification and comparison against other subnational CGF estimates 
 
Estimates produced by MBG models were compared to raw estimates from the DHS series, each 
aggregated to the first subnational geographic subdivision. These results are presented below. 
 

 
 
Supplementary Figure 43. Comparison of MBG estimates aggregated to admin 1 to DHS 
admin 1 estimates.  
95% uncertainty intervals are plotted along with the aggregated MBG estimates. Note that our 
model includes more data than just the DHS surveys. 
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5.4.10  Evaluation of projection methodology 
In the interest of evaluating our projection methods (described in the Methods section in the 
main manuscript), annual rates of change at the pixel level were calculated based on the years 
2000 to 2010, and were applied to the 2010 estimate to generate a “projection” for 2015. The 
alignment between this projection and our estimates is shown below for each indicator. Although 
the projections often yield reasonably close comparisons with the 2015 predictions, this is only 
true as long as the rates of change in the past are consistent with what was observed. An example 
where this does not hold can be seen in northern Nigeria in the stunting projection figure.  
 
 

 
 
Supplementary Figure 44. Stunting projection comparison.  
Comparison of 2015 estimates for stunting to “projected estimates” generated using annual rates 
of change based on time period of 2000–2010. The leftmost map shows the projections for 2015 
using a 5-year projection starting from 2010 and weighted annualized rates of change calculated 
from the 2000-2010 estimated mean maps. The rightmost plot shows the 2015 estimates and the 
middle map plots the difference between the two. The scatterplot on top plots the 2015 projected 
pixels against the estimated 2015 pixels from the model run. 
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Supplementary Figure 45. Wasting projection comparison.  
Comparison of 2015 estimates for underweight to “projected estimates” generated using annual 
rates of change based on time period of 2000–2010. The leftmost map shows the projections for 
2015 using a 5-year projection starting from 2010 and weighted annualized rates of change 
calculated from the 2000-2010 estimated mean maps. The rightmost plot shows the 2015 
estimates and the middle map plots the difference between the two. The scatterplot on top plots 
the 2015 projected pixels against the estimated 2015 pixels from the model run. 
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Supplementary Figure 46. Underweight projection comparison.  
Comparison of 2015 estimates for wasting to “projected estimates” generated using annual rates 
of change based on time period of 2000–2010. The leftmost map shows the projections for 2015 
using a 5-year projection starting from 2010 and weighted annualized rates of change calculated 
from the 2000-2010 estimated mean maps. The rightmost plot shows the 2015 estimates and the 
middle map plots the difference between the two. The scatterplot on top plots the 2015 projected 
pixels against the estimated 2015 pixels from the model run. 
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